Explainable Artificial Intelligence for Cotton Yield Prediction with Multisource Data

Abstract

Cotton is under the threat of climate and ecosystem change and has an essential role in the global textile industry. This makes its yield prediction essential for both economics and sustainability. The potential cotton yield can be predicted by integrating climatic factors, soil parameters, and biophysical parameters observed by high temporal and spatial resolution remote sensing satellites. This study used a multisource dataset to create an explainable and accurate predictive model for cotton yield prediction over the continental United States (CONUS). A recently proposed glass-box method called explainable boosting machine (EBM), which provides transparency, reliability, and ease of interpretation, was implemented. Accuracy performance was compared with the common machine learning (ML) methods for predicting cotton yields. The EBM showed higher accuracy against other glass-box methods and competitive results with black-box models. With the help of the EBM, the importance of individual features and their pairwise interactions was revealed without applying any post hoc methods. The study findings showed that precipitation (P), enhanced vegetation index (EVI), and leaf area index (LAI) are the three most important dynamic features. The dynamic features are the driver of the created model with 78% of the overall feature importance, followed by pairwise interactions of the features with 16% contribution. Finally, static features contribute 6% to the overall feature importance. The study highlights the importance of using multisource data and interactions of the input features and providing an interpretable model to understand the inner dynamics of cotton yield predictions.

Publication
IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Mustafa Serkan Isik
Mustafa Serkan Isik
PhD in Geosciences

My research interests include water cycle, remote sensing and satellite geodesy, and ML/DL algorithms.